Inverse estimation of source parameters of oceanic radioactivity dispersion models

نویسندگان

  • Y. Miyazawa
  • Y. Masumoto
  • S. M. Varlamov
  • T. Miyama
  • M. Takigawa
  • M. Honda
چکیده

Biogeosciences Discussions This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available. Abstract With combined use of the ocean-atmosphere simulation models and field observation data, we evaluate the parameters associated with the total caesium-137 amounts of the direct release into the ocean and atmospheric deposition over the Western North Pacific caused by the accident of Fukushima Daiichi nuclear power plant (FNPP) that 5 occurred in March 2011. The Green's function approach is adopted for the estimation of two parameters determining the total emission amounts for the period from 12 March to 6 May 2011. It is confirmed that the validity of the estimation depends on the simulation skill near FNPP. which indicates broader range of the estimate than that of the direct release owing to uncertainty of the dispersion widely spread over the Western North Pacific.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

Three-dimensional analytical models for time-dependent coefficients through uniform and varying plane input source in semi-infinite adsorbing porous media.

In the present study, analytical solutions are developed for three-dimensional advection-dispersion equation (ADE) in semi-infinite adsorbing saturated homogeneous porous medium with time dependent dispersion coefficient. It means porosity of the medium is filled with single fluid(water). Dispersion coefficient is considered proportional to seepage velocity while adsorption coefficient inversel...

متن کامل

Estimation of zeolite application effect on solute transport parameters at different soils using HYDRUS-1D model

ABSTRACT-Application of models for simulation of solute and pollutants transport in soil can reduce time and costs for remediation process. HYDRUS-1D model was developed to simulate the one–dimensional flow of soil water, heat, solute and viruses in variably saturated–unsaturated porous media. The objective of this investigation is to determine the solute transport parameters in disturbed soil ...

متن کامل

Estimation of the Strength of the Time-dependent Heat Source using Temperature Distribution at a Point in a Three Layer System

In this paper, the conjugate gradient method coupled with adjoint problem is used in order to solve the inverse heat conduction problem and estimation of the strength of the time- dependent heat source using the temperature distribution at a point in a three layer system. Also, the effect of noisy data on final solution is studied. The numerical solution of the governing equations is obtained b...

متن کامل

A Detailed Investigation of Particulate Dispersion from Kerman Cement Plant

The aim of this study was to investigate the particulate dispersion from Kerman Cement Plant. The upwind – downwind method was used to measure particle concentration and a cascade impactor was applied to determine particle size distribution. An Eulerian model, Gaussian plume model and an artificial neural network have been used to compute and predict concentration of PM10 from Ke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012